Faculty Submitting: _Grinias \qquad
Specify here whether "Pre" or "End" of Unit and the Unit \#: \qquad End Unit 14 \qquad

	Formula: $-\log _{10}(0.00044 * \mathrm{a}) / \mathrm{b}$ Parameters: Let $[\mathrm{a}]=0.110-0.140$ (vary by 0.001) and let $[\mathrm{b}]=0.110-0.140$ (vary by 0.001).
Read More	
$\begin{gathered} \hline \text { Unit 14_ } \\ \text { Question } \\ 5 \\ \hline \end{gathered}$	Canvas Question Type: Formula Question
	Question Text What is the pH of a solution of [a] $\mathrm{MCH}_{3} \mathrm{NH}_{2}$ and $[\mathrm{b}] \mathrm{MCH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$? $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq}) \quad \mathrm{Kb}=4.4 \times 10-4$
	Formula: $14+\log _{10}(0.00044 *$ a)/b Parameters: Let $[\mathrm{a}]=0.110-0.140$ (vary by 0.001) and let [b] $=0.110-0.140$ (vary by 0.001).
Read More	
$\begin{gathered} \hline \text { Unit 14_ } \\ \text { Question } \\ 6 \\ \hline \end{gathered}$	Canvas Question Type: Drop down GROUP, choose 1
6 a	Question Text A common buffer involves the use of acetic acid and sodium acetate. Will the concentration of acetate ion go up or down if a small volume of HCl is added to a buffer solution containing acetic acid and sodium acetate?
	Correct Answwer: Down Wrong Answers: Up
6b	Question Text A common buffer involves the use of acetic acid and sodium acetate. Will the concentration of acetic acid go up or down if a small volume of HCl is added to a buffer solution containing acetic acid and sodium acetate?
	Correct Answwer: Up Wrong Answers: Down
$\begin{gathered} \hline \text { Unit 14_ } \\ \text { Question } \\ \quad 7 \text { a } \end{gathered}$	Question Text A common buffer involves the use of acetic acid and sodium acetate. Will the concentration of acetate ion go up or down if a small volume of NaOH is added to a buffer solution containing acetic acid and sodium acetate?
	Correct Answwer: Up Wrong Answers: Down
7b	Question Text A common buffer involves the use of acetic acid and sodium acetate. Will the concentration of acetic acid go up or down if a small volume of NaOH is added to a buffer solution containing acetic acid and sodium acetate?

	Correct Answwer: Down Wrong Answers: Up
Unit 14 Question 8 a	Question Text A common buffer involves the use of ammonia and ammonium nitrate. Will the concentration of ammonia go up or down if a small amount of HCl is added to a buffer solution containing ammonia and ammonium nitrate?
	Correct Answwer: Down
8b	Question Text: A common buffer involves the use of ammonia and ammonium nitrate. Will the concentration of ammonium ion go up or down if a small amount of HCl is added to a buffer solution containing ammonia and ammonium nitrate?
	Correct Answwer: Up
Unit 14 Question 9 a	Question Text: A common buffer involves the use of ammonia and ammonium nitrate. Will the concentration of ammonia go up or down if a small amount of NaOH is added to a buffer solution containing ammonia and ammonium nitrate?
	Correct Answwer: Up
9b	Question Text: A common buffer involves the use of ammonia and ammonium nitrate. Will the concentration of ammonium ion go up or down if a small amount of NaOH is added to a buffer solution containing ammonia and ammonium nitrate?
	Correct Answwer: Down
$\begin{gathered} \hline \text { Unit 14_ } \\ \text { Question } \\ 10 \mathrm{a} \end{gathered}$	Question Text: A common buffer involves the use of ammonia and ammonium nitrate. Will the pH go up or down if a small amount of HCl is added to a buffer solution containing ammonia and ammonium nitrate?
	Correct Answer: Down
10b	Question Text: A common buffer involves the use of ammonia and ammonium nitrate. Will the pH go up or down if a small amount of NaOH is added to a buffer solution containing ammonia and ammonium nitrate?
	Correct Answer: Up
Unit 14 Question 11	Canvas Question Type: Formula Question
11a	Question Text What will be the pH of a buffer solution prepared from [a] mol NH_{3}, [b] mol $\mathrm{NH}_{4} \mathrm{NO}_{3}$, and just enough water to give [c] L of solution? Use ionization constants from Appendices H \& I to help solve this problem. Formula: $9.255+\log _{10}(\mathrm{a} / \mathrm{b})$ Parameters: Let [a] $=0.15-0.30$ (vary by 0.01), let [b] $=0.15-0.30$ (vary by 0.01), and let [c] = 0.95-1.05 (vary by 0.01).
11b	Question Text What will be the pH of a buffer solution prepared from [a] mol sodium acetate, [b] mol acetic acid, and just enough water to give [c] L of solution? Use ionization constants from Appendices H \& I to help solve this problem. Formula: $4.745+\log _{10}(a / b)$ Parameters Let $[a]=0.15-0.30$ (vary by 0.01), let $[b]=0.15-0.30$ (vary by 0.01), and let [c] = 0.95-1.05 (vary by 0.01).

Unit 14_ Question $\mathbf{1 2}$	Question Text: Calculate the pH in a titration of $40 \mathrm{~mL}(0.040 \mathrm{~L})$ of 0.100 M barbituric acid $\left(K_{\mathrm{a}}=9.8 \times 10^{-5}\right)$ with 0.100 M KOH after $[\mathrm{a}] \mathrm{mL}$ of 0.100 MKOH have been added.
	Formula: $4.01+\log _{10}((40-\mathrm{a}) / \mathrm{a})$ Parameters Let $[\mathrm{a}]=10.0-35.0$ (vary by 0.1$)$
Read more	

